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Abstract

Context

With the acknowledged benefits of microservices architectures, such as scal-
ability, flexibility, improved maintenance, and deployment, legacy software
systems are increasingly being reengineered into microservices. Recently, a
plethora of methods, techniques, tools, and evaluation criteria for reengineer-
ing software systems into microservices have been proposed without being
systematized.

Objectives
The objective of this work is to conduct an in-depth systematic literature re-
view to identify and analyze methods, techniques, and tools for reengineering
software systems into microservices and the ways for evaluating such reengi-
neering initiatives and their results.

Methods
A systematic literature review of works on reengineering software systems
into microservices was performed, yielding 117 primary studies. The re-
view focused on addressing key research questions concerning the evolution
of microservices reengineering, methodologies employed, tools available, and
the challenges faced in the reengineering process. We used a taxonomy de-
velopment method to systematize knowledge in these areas.
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Results
The analysis revealed multiple reengineering approaches: static, dynamic,
hybrid, and artifact-driven. Significant evaluation criteria identified include
coupling, cohesion, and modularity. Key paradigms for microservices reengi-
neering, such as domain-driven design and interface analysis, were identified
and discussed. The study also highlights that incremental and iterative tran-
sitions are favored in practice.

Conclusion
This study provides a structured overview of the current state of research on
reengineering software systems into microservices. It highlights challenges
in existing reengineering methodologies. Future directions include validat-
ing behavioral equivalence of original and reengineered systems, automating
microservices generation, and refining database layer partitioning. The find-
ings emphasize the need for further work to enhance the reengineering pro-
cess and evaluation of the transition between monolithic and microservices
architectures.

1. Introduction

Modernizing software systems is essential to obtain the benefits of the
latest technical capabilities [9]. Monolithic, legacy mainframe-based software
systems are an increasingly obsolete technology that suffers from scalability,
maintainability, availability, and efficiency problems [10–13]. Therefore, there
is an imperative need to modernize such systems to obtain better performance
and improve the overall developer and user experience [14].

A wave of migration of monolithic software to object-oriented platforms
was observed at the end of the previous millennium [15]. Later, service-
oriented architectures (SOAs) emerged, and legacy software systems began
moving toward service-oriented architectures [16]. In an SOA, software sys-
tems are modular, with distributed modules having clearly defined inter-
faces [17]. But these services are not independent services [18]. As opposed
to the logically related operations in an SOA, the microservice architectural
style emerged promising to distribute applications via fine-grained, loosely
coupled, and highly cohesive autonomous components communicating via
well-defined, lightweight protocols managing local, synchronized databases,
achieving high scalability, availability, and efficiency [12, 13].
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The tightly coupled nature of legacy software systems reduces their scala-
bility and maintainability. Often, making a change in one class affects several
other classes. Hence, it increases complexity and development time [19]. De-
composing legacy systems into small independent units increases the main-
tainability [20]. Microservices were first discussed in 2011 [13]. In addition
to addressing the aforementioned drawbacks of conventional software archi-
tectures, microservices enable independent development and deployment of
services, flexibility in horizontal scaling in the cloud environment, and sup-
port for efficient development team management [21]. Due to their multiple
advantages, companies like Google, Netflix, Amazon, Uber, and eBay up-
graded to microservice-based systems.

Companies often have a substantial investment in their corporate busi-
ness systems and cannot afford to redevelop them entirely. Instead, a legacy
system can be converted into a microservice system by incrementally extract-
ing microservices from it. This approach has several advantages. Firstly, it
makes the best use of the company’s existing investment in the original sys-
tem, which is often considerable and spans several decades. Secondly, the
complexity of a legacy system and the effort, time to market, and resource
constraints (e.g., human resources) required to reimplement it from scratch
can be prohibitive. Finally, only certain system parts may be suitable for mi-
gration, while others cannot benefit from or even will degrade when moved
to the new architectural style. For example, functionality that is infrequently
used, such as annual financial reporting, is probably best implemented in the
head office’s mainframe. Hence, the ability to extract specific services for
reengineering and redeployment as microservices while leaving other func-
tionalities unchanged is essential.

Several studies [1–8] have been conducted to review the works on micro-
services identification. Schmidt and Thiry [1] reviewed model-driven engi-
neering and domain-driven analysis approaches to identify potential micro-
services. Schröer et al. [2] analyzed the techniques for identifying micro-
services during the requirement analysis and design phases with the evalua-
tion techniques of identified microservices. Cojocaru et al. [3] discussed the
quality assessment criteria for microservices automatically decomposed from
monolithic applications. Quality-driven approaches in migration, quality at-
tributes analysis, and quality-driven process implementation were reviewed
by Capuano and Muccini [4]. Ponce et al. [5] conducted a rapid review
study of migration techniques, the types of systems to which the proposed
techniques are applied, methods for validating the migration techniques, and
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the challenges associated with such migrations. Fritzsch et al. [6] analyzed
existing architectural refactoring approaches in the context of decomposing
a monolithic application architecture into microservices and how they can
be classified concerning the techniques and strategies used. The approaches
to modernizing legacy software were discussed by Wolfart et al. [7]. They
defined a road map for modernizing legacy systems with microservices that
includes motivations, understanding and decomposing legacy systems, exe-
cution, validation, monitoring, and infrastructure aspects of the modernizing
process. A taxonomy of service identification approaches that combine the
inputs used for service identification, the process followed, the output of ser-
vice identification, and the usability of service identification was developed
by Abdellatif et al. [8].

Existing studies have been limited both in scope and in the number of re-
viewed works. The various aspects of redesigning monolithic software systems
by extracting discrete functions from them that could be re-implemented as
microservices, including service discovery approaches and techniques, tools
that support reengineering, data used to inform migration processes, eval-
uation methods for the resulting microservice systems, and challenges and
limitations of the existing reengineering approaches were not in the focus
of previous studies. A comparison of existing studies is provided in Table 1.
Thus, our research herein aims to provide a comprehensive review of previous
studies, contribute to a better understanding of microservice discovery tech-
niques regarding software architectural properties, and recommend future
research directions for migrating monolithic software systems to microserv-
ices architectures.

Our study below is based on 117 papers. It reveals that static (44%),
dynamic (12%), hybrid (12%), and artifact-driven (32%) techniques are the
major classes of approaches for microservices identification and extraction.
Source code structure analysis that involves inheritance attributes and struc-
tural interactions analysis is a widely used static analysis technique. Dynamic
analysis, however, is an under-explored area. It often relies on instrumented
logs. Hybrid approaches combine the aspects of static and dynamic tech-
niques. Artifact-driven techniques rely on domain-driven designs (DDD) and
additional software artifacts. We have further observed two main techniques
for microservices identification, namely system modeling and microservices
extraction. Prominent studies [19, 21–38] have been identified for each class
of techniques. Input/output and tools used by the studies, the level of au-
tomation, and various evaluation techniques were thoroughly reviewed to
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Table 1: A comparison of existing literature reviews on reengineering of software systems
into microservices.

Literature review LR[1] LR[2] LR[3] LR[4] LR[5] LR[6] LR[7] LR[8] This
study Research

question(s)
addressed

in this
study

Review period/year 2013–
2019 2020 1998–

2018
2016–
2022 2019 2018 2020 2019 2023

Number of reviewed papers 27 31 29 58 20 10 62 41 117

Comparison of research questions
What are the techniques/approaches/patterns for legacy
software reengineering? RQ2.1&RQ2.3

What types of systems have the existing reengineering
techniques been applied to? RQ2.1

What tools are used for reengineering monolithic systems
into microservices? RQ2.2

What inputs/outputs are used by the existing
reengineering techniques? RQ2.4

What driving forces/evaluation criteria are used for the identified
microservices? RQ2.5

How reengineering processes/techniques are
validated? RQ2.5

What quality-driven/assessment criteria are used for
reengineering? RQ2.5

What quality attributes are analyzed, and how have they
been implemented for reengineering? RQ2.5

What are the challenges of reengineering legacy
software systems into microservices? RQ3

What usability aspects, advantages, and disadvantages/
limitations are highlighted? RQ3

What are the roles and responsibilities involved in
the identification of microservices? N/A

Addressed Partially addressed Not addressed

address all the aspects of microservice extraction. Moreover, core design
principles, such as domain-driven design, workflow analysis, feature analy-
sis, semantic analysis, repository analysis, interface analysis, and runtime
analysis, were identified. Finally, we discuss further insights into the limita-
tions and future directions in the area of microservices-based software system
reengineering.

The remainder of the paper proceeds as follows. Section 2 describes
the research methodology followed in this work. Sections 3 and 4 present
and discuss the results of our literature review. Finally, Section 5 states
concluding remarks.

2. Systematic Literature Review Process

In this work, we followed the guidelines for performing a systematic liter-
ature review in software engineering proposed by Kitchenham and Charters
[39] and further refined by Kitchenham and Brereton [40]. Existing literature
review studies [1–8] were identified by first performing an initial search for
survey and literature review papers in the area of interest and then including
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all additional secondary studies identified when searching for the relevant
primary studies. Table 1 compares the existing literature reviews. If a study
has declared a specific review period or year, it is specified in the review
period/year row. Otherwise, the study year has been provided to indicate
that the review period cannot go beyond that year. If a study mentions
the number of reviewed papers, it is indicated in the number of reviewed
papers row. The research questions listed in the first column of Table 1 are
the research questions addressed in the existing studies. We merged similar
research questions and rephrased them to ensure the consistent use of termi-
nology. The table summarizes which research questions are fully, partially,
or not addressed in the existing literature reviews. Review LR[1] focuses on
semi-automated approaches to reengineering and, thus, partially addresses
the question of what techniques/approaches/patterns are used for legacy soft-
ware reengineering. Reviews LR[2], LR[3], LR[4], and LR[6] listed in Table 1
have addressed only certain aspects of the problem. Reviews LR[5], LR[7],
and LR[8] are extensive literature reviews on the topic. Note that LR[5] is
not a systematic literature review. The scope of LR[7] is different from our
research since it is focused on defining a road map for modernizing legacy
systems. Finally, Review LR[8] focuses on service identification instead of
microservice identification and reengineering.

Our analysis indicates that works on the identification and reengineer-
ing of microservices reached their peak between 2020 and 2022, as shown in
Fig. 2. In particular, 69% of the studies were conducted during these years.
Since the majority of existing literature review studies have been conducted
in or before 2020, our study has a better coverage of the relevant works. As
the existing literature reviews are limited in scope, objectives, and coverage,
it is, therefore, essential to analyze and systematize existing works compre-
hensively, spanning different techniques, system modeling approaches, and
evaluation strategies to understand the state-of-the-art, research gaps, and
promising avenues for future work. Hence our work seeks to address this gap.

2.1. Research Questions
Our literature review was conducted to examine existing methods, tech-

niques, and tools for reengineering software systems into microservices, un-
derstand the limitations of the existing approaches, and identify fruitful av-
enues for future work. Consequently, we formulated the following research
questions to guide our study.
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RQ1 How did research on the reengineering of software systems into micro-
service-based systems develop over time?

RQ2 What approaches are used to reengineer software systems into micro-
service-based systems, and how are reengineered systems evaluated?

RQ2.1 What classes of approaches (e.g., static and dynamic) exist?
RQ2.2 What tools exist and which level of automation do they support?
RQ2.3 Which techniques/algorithms are used?
RQ2.4 How is data (e.g., software logs) used?
RQ2.5 How are the reengineered systems evaluated?

RQ3 What are the challenges and limitations of existing methods for reengi-
neering software systems into microservice-based systems?

Our research questions were defined to maximize the coverage of the ques-
tions addressed in the early studies (cf. the first column in Table 1) and to
understand and refine them further. The last column in Table 1 maps the re-
search questions addressed in our work onto the questions studied elsewhere.
However, our study does not consider the last question listed in the table.
Due to the typical roles involved in the software development lifecycle, we
excluded this aspect from our study.

2.2. Search Protocol and Selection Criteria
All the publications analyzed in this study were retrieved from five data-

bases widely used to index publications in the areas of computer science and
software engineering: Web of Science,1 Scopus,2 ScienceDirect,3 ACM Digital
Library,4 and IEEE Xplorer Digital Library.5 These databases provide good
coverage of primary sources from high-quality academic journals and peer-
reviewed conferences [41].

To maximize the chances of identifying papers that can contribute to
answering the research questions of this study, we used these keywords: “mi-
croservice”, “reengineer”, “redesign”, “refactor”, “rearchitect”, “migrate”, “dis-
cover”, and “identify”. The keyword “microservice” was included as the study

1https://clarivate.com/webofsciencegroup/solutions/web-of-science
2https://www.scopus.com/
3https://www.sciencedirect.com/
4http://portal.acm.org/
5https://ieeexplore.ieee.org/
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Table 2: Inclusion and exclusion criteria.
Criterion type Criterion definition
Inclusion 1. Study is on legacy software system reengineering

2. Study is on requirements for reengineering of legacy software sys-
tems

3. Study is on a technique for evaluating functional consistency of a
reengineered software system

4. Study is on a technique for evaluating the performance of a mi-
croservice system

5. Study is on using software logs for legacy software system reengi-
neering

6. Study is on an approach for evaluating microservices
Exclusion 1. Study is not related to software systems

2. Study is on microservice system deployment, self-adjusting models,
Quality of Service, or scalability

3. Study is on networks or load testing, security, and fault tolerance
of software systems

4. Study does not present sufficient technical details to contribute to
at least one research question addressed in this literature review

5. Study did not undergo a peer-review process, for example, pub-
lished in a non-reviewed journal or conference papers, theses, books
and book chapters, and doctoral dissertations

6. Study is a literature review
7. Study is not in English

focuses on microservices systems. Keywords such as “reengineer”, “redesign”,
“refactor”, “rearchitect”, and “migrate” were selected as this work focuses on
reengineering software systems into microservice-based systems. Lastly, the
keywords “discover” and “identify” were added to address the objective of
identifying microservices. The search query used for the Web of Science
database is listed below:

(TS = (microservice* AND (reengineer* OR re-engineer* OR re-
design* OR re-design* OR discover* OR identify* OR refactor*
OR rearchitect* OR re-architect* OR migrate*))) AND (WC =
(Computer Science)) AND (DT = (Article OR Book Chapter OR
Proceedings Paper)) AND (LA = (English)).

To guide the selection of primary studies to include in our review, we defined
the inclusion and exclusion criteria listed in Table 2. These criteria were
applied to assess the suitability of each study for inclusion.
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ACM Digital Library
(3188)

Web of Science
(475)

Scopus
(709)

ScienceDirect
(52)

IEEE Xplorer
(419)

Initial Search
(4843)

Duplicate Removal
(2441)

Inclusion/Exclusion
(220)

Full Text Read
(107)

Snowballing
(10)

Primary Studies
(117)

Figure 1: Overview of the stages and results of our literature selection process.

Figure 1 summarizes our search process for selecting primary studies,
including the number of papers identified in each stage. The initial search
for relevant papers over the five databases was conducted on the 23rd of
January 2023.

To ensure the full coverage of works relevant to this study on the date
the search was conducted, we did not impose restrictions on the publication
dates of the retrieved references. In this initial search, 4 843 references were
retrieved. As a paper can be indexed by several databases, we removed du-
plicate references to result in 2 441 distinct references. To determine their
relevance to our study, all the references were evaluated against the inclu-
sion and exclusion criteria from Table 2 using a checklist-based scoring pro-
cedure. Papers on legacy system refactoring, requirements for refactoring,
refactoring techniques, and evaluation of reengineered systems were included
for further analysis. Studies not related to our research questions, for ex-
ample, papers on networks and deployment of microservice-based systems,
non-peer-reviewed studies, studies not related to software systems, or not in
English, were excluded from further processing. At the end of this stage,
220 papers were identified as potentially relevant for our literature review.
The inclusion/exclusion decisions were taken based on paper titles and ab-
stracts. Hence, papers with unclear exclusion decisions were kept for further
full text analysis. The full text read of 220 papers revealed 107 relevant stud-
ies. During the review of the papers selected for full-text analysis, relevant
references were noted. These references were analyzed in the snowballing
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stage, and relevant works were included in the study. Both forward and
backward searching on references were performed. Ten additional papers
were included in the snowballing stage. Consequently, the presented search
process has resulted in the identification of 117 primary studies.

2.3. Data Extraction and Synthesis
To systematize the knowledge extracted during the in-depth analysis of

the primary studies, we followed a method for taxonomy development by
Nickerson et al. [42]. It is an iterative approach to identifying concepts
and their characteristics and grouping them into dimensions. The method
guides the evaluation of the developed taxonomies for usefulness, like the
completeness and robustness of the developed taxonomy dimensions. After
defining the classification criteria compatible with the research questions, the
selected primary studies were analyzed in-depth, and relevant insights were
extracted and recorded in a spreadsheet for subsequent analysis.

2.4. Quality Assessment
To ensure the rigor and credibility of our study, the author team pro-

vided guidance and oversight of all stages of the literature review process.
Multiple review iterations were conducted to enhance the quality of decisions
and minimize errors. The team collaboratively selected the digital libraries,
helped refine keywords to retrieve a sufficient number of relevant papers, and
helped establish the selection criteria. Additionally, the entire team reached
a consensus on the classification criteria before data extraction began and
reviewed the results to ensure consistency and reliability.

3. Results

This section elaborates on the findings of the literature review based on
the research questions. Appendix A lists the primary studies selected for this
literature review. Table 3 summarizes the classification of the selected 117
papers. The majority of the papers (71%) explain legacy system migration
strategies, whereas most of the remainder of the papers (25%) focus on in-
dustry interviews and case studies. A small number of papers (4%) discuss
greenfield development, where new system implementation in a microservice-
based architecture is considered. The greenfield development was included in
the analysis since it is applied in the context of artifact-based microservices
extraction.
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Table 3: Paper classification details.

Type of study Number of papers
Software system migration studies 83
Case studies and industry interviews 30
Greenfield development 4

3.1. RQ1) How did research on the reengineering of software systems into
microservice-based systems develop over time?

The first study on software systems reengineering into microservices was
published in 2016. Manual, semi-automated, and automated techniques for
migrating systems are discussed in the literature. Manual techniques are
completely human-oriented, whereas appropriate modeling, extraction, and
visualization tools assist people during semi-automated system reengineering
projects. In contrast, automatic techniques produce possible microservice
recommendations from various inputs, e.g., source code, software logs, and
software design artifacts. These recommendations can then form the basis
for system reengineering.

Figure 2a depicts the progression of automation levels in the techniques
examined across the surveyed studies over time. A significant proportion
of the studies (38%) concentrated on semi-automated identification meth-
ods. Manual approaches are similarly prevalent, comprising 37% of the total
studies. In recent years, there has been a notable shift towards automated
approaches, which now account for the remaining 25% of the studies.

The identified approaches for decomposing software systems into micro-
services are classified as static, dynamic, artifact-driven, and hybrid analyses.
In static analysis, program source code, database schemata, and source code
repository histories are used to provide insights into the system under study.
By contrast, dynamic analysis considers execution time details like software
system and server event logs, and runtime monitoring. The artifact-driven
approaches are based on system artifacts like UML and data flow diagrams,
architectural documents, use cases and user stories, ubiquitous language, and
domain models. Domain-driven design (DDD) and task-driven (functional-
driven) design patterns are a subset of artificial-driven approaches. Finally,
the hybrid approach can combine static, dynamic, and artifact-driven ap-
proaches.

Figure 2b illustrates the numbers of different microservice identification
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(a) Level of automation

(b) Analysis type

Figure 2: Number of studies over time.

approaches published over time. Most of the existing studies are based on
static system analysis (44% of studies). The artifact-driven analysis is the
second most used technique for software systems reengineering (32%). The
studies of dynamic and hybrid approaches are less frequent, with each ap-
proach comprising only 12% of the total studies.

3.2. RQ2) What approaches are used to reengineer software systems into
microservice-based systems, and how are reengineered systems evalu-
ated?

In this section, we discuss the identified approaches for reengineering
software systems into microservices systems.

3.2.1. RQ2.1) What classes of approaches exist?
The approaches used to analyze monolithic applications for their reengi-

neering into microservices systems can be broadly classified into three main
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categories: static, dynamic, and artifact-driven analysis. An additional hy-
brid approach is identified, consolidating the main approaches.

The artifact-driven approaches use software artifacts like requirements,
design diagrams, UML diagrams, data flow diagrams, business processes,
use cases, user stories, domain models, and other design artifacts to identify
bounded contexts for microservices. Each such bounded context implements
a small, highly cohesive, loosely coupled behavior [43]. These contexts are
then accepted as microservice candidates.

The static analysis approaches are based on analysis of source code,
database schema, and histories of source code repositories. These approaches
use dependencies between classes, like inheritance, extended class relation-
ships, similarities between classes and database tables, and dependent com-
mits in code repositories.

In contrast, the dynamic analysis approaches use runtime information to
identify microservices. For example, they use runtime monitoring, execution
time data correlations, and system-generated logs.

Lastly, the hybrid analysis techniques combine principles from the ap-
proaches discussed above. Often, a hybrid approach results from extending
one “pure” approach with some feature of an approach of a different type.
For example, a static analysis technique can borrow ideas of software log
analysis to complement its microservice identification decisions.

Figure 3 shows categories and subcategories of the three main approaches.
The leaf nodes in the figure correspond to relevant study IDs, which are de-
tailed in Appendix A. A comprehensive analysis of the categories and sub-
categories follows.

Artifact-driven analysis
An artifact-driven analysis uses various system representations to examine
requirements, features, use cases, classes, and components of the system.
The main categories of artifact-driven approaches, defined by the types of
analyzed artifacts, are detailed below:

• Domain models/languages : Domain models and languages play a crucial
role in software engineering by representing relationships between classes
or entities. For example, UML diagrams provide abstract visualizations of
the software system. The term domain language, also known as ubiquitous
language, refers to the consistent terminology used to describe business
operations and is essential for capturing terms from legacy systems [44].
Use cases describe user interactions with the system, while user stories
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Microservice identification 
approaches

Static Dynamic
Artifact-
driven

Domain models/languages
 (1, 7, 8, 9, 40, 46, 54, 75, 76, 106)

Business processes 
(21, 59, 92, 95, 104, 107)

Data flow diagrams (48, 69)

System requirements, 
features and functions (34, 41, 
49, 65, 74, 77, 105, 114, 115, 116)

Domain semantics (21, 73)

Server logs (5, 6)

System logs and traces (2, 24, 25, 
26, 39, 42, 43, 57, 72, 83, 88, 100, 

108)

Runtime monitoring
(13, 39, 46, 52, 88)

Database

Source 
code

Repository 
history

Schema and tables
(4, 7, 27, 33, 40, 46, 49, 53, 91)

Stored procedures (8)

SQL queries to object 
mapping (24, 25, 26)

Topic modeling in DB tables
(58)

Structural

Semantic CustomInheritance Interaction

AST, dependency 
graphs

 (11, 32, 33, 43, 52, 53, 
55, 57, 66, 67, 80, 90, 91, 

109)

Classes, hierarchy, 
and subtypes

(27, 28, 29, 33, 37, 43, 44, 
46, 49, 52, 55, 63, 79, 89, 

94, 111, 112, 113)

API and entry points 
 (4, 29, 37, 39, 44, 93, 101)

Call graphs
(13, 28, 51, 53, 61, 66, 

79, 83, 89, 93, 96)

Object references
(27, 53)

NLP and IR (51, 66, 86)

Topic modeling 
(11, 55, 117)

Unique term analysis
(27, 28)

Business logic
(4, 8, 91)

CRUD operations and 
ORM (24, 25, 26, 27, 33, 

61)

Reverse engineering
(31, 79, 99)

Language annotations
(33, 79)

API specifications
(70, 85, 87)

Consecutive commit 
analysis (32)

Evolutionary coupling 
(51, 86, 112)

Contributor coupling 
(86, 112)

System ontology 
(97)

Figure 3: Classification of approaches.

outline specific system features. Architecture Description Language (ADL)
and Unified Modeling Language (UML) are commonly used to define and
visualize the system’s architecture. These artifacts help identify service
boundaries and are typically analyzed manually to determine the scopes
and candidates for microservices.

• Business processes : A business process comprises activities coordinated
within an organizational and technical environment to achieve a specific
business goal [45]. In software systems, the dependencies between business
processes—such as data, structural, semantic, and control dependencies—
can be analyzed to gain insights into their interactions. These dependencies
are represented as matrices, which serve as input to identify microservices.

• Data flow diagrams : A data flow diagram (DFD) graphically represents
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the flow of data within a system, detailing how business functions or oper-
ations process inputs into outputs [46]. It consists of processes (activities
or functions that transform data), data stores (repositories where data
is stored), data flows (paths showing how data moves between compo-
nents), and external entities (sources or destinations of data outside the
system). DFDs play a key role in microservice identification by mapping
dependencies between processes and data stores. These dependencies are
analyzed through the construction of dependency matrices, which help
identify highly correlated processes and components. Alternatively, cus-
tom algorithms are used to examine the relationships between processes
and data stores, aiding in the identification of microservices.

• System features and functions : System requirements, features, and func-
tionalities are used to identify microservices [47]. The system functionali-
ties are analyzed or divided into sub-tasks that cannot be divided further to
identify the dependencies. Based on these dependencies, connected groups
of functionalities are identified as candidate microservices.

• Domain semantics : Semantic analysis involves a detailed examination of
various software artifacts to derive meaningful insights [48, 49]. In the con-
text of microservice identification, these techniques analyze the extracted
vocabularies of system terms—such as domain-specific keywords, entity
names, and operation descriptions. Similarity calculations are performed
on these vocabularies to identify related system entities and operations
that share commonalities, enabling the grouping of these elements into
potential microservices.

Static analysis
Static analysis is one of the most commonly discussed approaches for mi-
croservice identification in the literature. Static analysis techniques rely on
analyzing artifacts derived from source code, databases, and version control
systems. Next, we provide details on these techniques.
Source code analysis involves examining various components of a system,
including classes that represent entities, core functions implementing busi-
ness logic, communication APIs, and user interface (UI) components. The
analysis leverages the structure and semantics of the source code, as well as
custom approaches, to identify and extract potential microservices. These
methods aim to group related functionalities into cohesive and independent
services by studying these information elements in the source code:
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• Structural inheritance: Structural inheritance analysis examines source
code packages, classes, method-level dependencies, and class inheritance
hierarchies to uncover relationships within the system. This analysis of-
ten involves constructing an abstract syntax tree (AST) of the source code,
which is then used to generate system dependency graphs. In these graphs,
classes and methods are represented as vertices, while their dependencies
form the edges. Dependency graphs and ASTs are typically generated
using static analysis tools, with further details provided in Table 5. Addi-
tionally, the class hierarchy is analyzed by examining extended (inherited)
and implemented classes to identify structural relationships that may guide
microservice identification.

• Structural interaction: Structural interaction analysis focuses on the in-
terconnections between classes and methods in source code to identify
microservice boundaries. This process begins by analyzing APIs and other
entry points, such as UI calls, to determine a set of execution paths. These
paths, along with their subpaths and interconnected segments, are exam-
ined to understand data usage and dependencies. Call graphs, which map
method invocations within the source code, are also utilized to identify
interconnected components. These graphs can be either context-sensitive,
where different calls are annotated with unique identifiers to distinguish
paths through the same code sections, or context-insensitive, which lack
such distinctions [23]. Additionally, object reference relationships, includ-
ing information flows that trigger the creation of object instances, are
analyzed to uncover related classes and methods. These interconnected
components form the foundation for identifying potential microservices.

• Semantics : These approaches examine the similarity between the words
(terminology) in the source code and derive the co-related classes as pos-
sible microservice candidates. This type of approach is also known as
domain-related service decomposition. The core assumption for the ap-
proaches from this category is that related features use similar terminol-
ogy at the implementation level. Specifically, semantic approaches employ
these techniques in their analysis:

– Natural language processing (NLP) and information retrieval (IR) tech-
niques are commonly used to extract semantic details. These techniques
filter source code to exclude programming language keywords and space
characters. Then, word tokenization, stop word removal, stemming,
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word enrichment using the synonyms from existing word dictionaries,
and tf-idf calculations are performed. Brito et al. [25] use ASTs instead
of source code to exclude the library dependencies to identify the terms
of the system.

– Topic modeling is another approach used for semantic analysis. Stop
word removal and stemming are applied to remove insignificant terms
and reduce multiple variations of identical terms from the source code.
After identifying the unique bag of words, topic modeling classifiers like
Latent Dirichlet Allocation (LDA) and Seeded Latent Dirichlet Alloca-
tion (SLDA) are applied to group the lexical terms into clusters. These
clusters are either directly identified as microservices or further processed
using graph-based modeling.

– Unique term analysis identifies distinct keywords in the source code and
constructs a word frequency matrix for each class. This matrix is then
used to calculate cosine similarity, which quantifies the semantic related-
ness between two classes based on the overlap of their term distributions.
By identifying classes with high relatedness, this analysis helps uncover
potential groupings or dependencies that can inform microservice iden-
tification.

• Custom analysis : These methods leverage additional elements of the source
code to identify microservices, as outlined below:

– Business logic in the source code is analyzed to identify core business
functions, which can then be grouped into microservices based on their
roles and dependencies.

– Persistence layer of the application is examined to identify entities as-
sociated with data sources, along with the Create, Read, Update, and
Delete (CRUD) operations performed on them. This analysis is often
conducted in conjunction with data source analysis to understand the
relationships between data and services.

– Reverse engineering is another custom analysis technique where reverse
engineering tools are used to extract the underlying system architec-
ture. This extracted architecture is then analyzed to apply dependency
analysis, helping identify related partitions within the system.

– Programming language annotations are used to identify key components
in the source code. For example, Java annotations like @EJB, @Con-
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troller, and @Entity help pinpoint key classes and components, which
can then be grouped into microservices based on their functionality and
dependencies.

– API specification techniques involve analyzing API documentation, such
as those following OpenAPI standards6, to examine semantic similari-
ties. This information is then used to infer potential microservices based
on the relationships and dependencies between APIs.

Database analysis involves examining tables, relationships, and entity
mappings used by Object-Relational Mapping (ORM) frameworks to under-
stand how data is structured within the system. In the context of microserv-
ices, the "database per microservice" pattern is often recommended to ensure
each service has its own dedicated data store, which promotes data auton-
omy and scalability [23, 50]. When identifying microservices, it is crucial to
analyze the persistent entities, such as database tables, that are associated
with each service, as these entities play a key role in defining the boundaries
and responsibilities of microservices. Specifically, these elements are studied:

• Schema and tables : The primary approach to database analysis involves
examining tables, their attributes, and the relationships between them,
including key constraints and triggers.

• Stored procedures : In legacy systems, business logic is often implemented
in the database layer, typically as stored procedures, due to performance
concerns and network overhead. This practice results in the mapping of
stored procedures to business functions, which is another valuable tech-
nique for data source analysis.

• Queries and business objects : Validating SQL queries and their associated
business objects is crucial for microservice identification. This involves
analyzing the information derived from SQL queries, as well as the relevant
entities and attributes accessed through these queries, to identify potential
microservice boundaries.

• Topics : Topic modeling applied to database tables is another technique
for data source analysis. In this method, each table is treated as a docu-
ment, with its properties serving as the document’s attributes. The lexical

6https://spec.openapis.org/oas/v3.1.0
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similarity between these documents is then calculated, allowing for the
grouping of related tables into highly cohesive partitions, which can be
identified as potential microservices.

Version control systems maintain a history of source file changes through
collections of code commits, along with associated author information. Evo-
lutionary coupling, which involves analyzing commit histories to identify cor-
related classes within the change logs, helps identify relationships between
components based on their modification patterns. Consecutive commit anal-
ysis, a subcategory of evolutionary coupling, examines changes across multi-
ple classes in consecutive commits to group them accordingly.

Additionally, evolutionary coupling graphs aggregate commits over dif-
ferent time periods. In these graphs, vertices represent classes, and edges
are drawn between classes that are modified together within a single com-
mit. This approach is known as logical coupling [21]. Lastly, the contribu-
tor coupling graph maps developers to the changes they have made in the
source code. Since effective team organization is a key factor in successful
microservice migration[21], this analysis helps extract system changes from
the perspective of contributors.

Dynamic analysis
The final category of identified approaches is dynamic analysis. In a dynamic
analysis approach, the software system is treated as a black box, where the
produced outputs are analyzed based on the provided inputs to identify recur-
ring patterns and execution traces. Three subcategories fall under dynamic
analysis, as discussed below:

• Server logs : Server access log analysis plays a crucial role in the reengineer-
ing of web applications, where web server access log files are examined to
identify frequently invoked URIs. Server logs, such as those from Apache
Tomcat7 and WildFly8, provide detailed information on access URIs, re-
quest and response times, and response sizes. These logs are analyzed by
examining the frequency of URIs and response sizes and times, which helps
group requests into potential candidate microservices.

• System logs : Most existing studies that conduct dynamic analysis rely on
system log analysis. Instrumenting the source code using aspect-oriented

7https://tomcat.apache.org/
8https://www.wildfly.org/
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programming (AOP) is a log collection technique in which an agent is
integrated into the source code to capture logs based on the operations
performed by the system. These logs are subsequently provided as inputs
to a process mining tool, like Disco9, or analyzed further to identify fre-
quent execution traces, processes, and dependencies. The validity of this
approach depends on the extent of coverage of actions performed on the
instrumented system. To enhance the coverage of operations, use cases,
functional tests, unit tests, and user simulations have been employed.

• Runtime monitoring : Runtime monitoring has been defined as another
class of dynamic analysis approaches. In such an approach, the system
is observed during execution time, and collected information is used for
system reengineering. Kieker10, Elastic APM11, and dynatrace12 are the
tools used for this purpose.

Furthermore, a hybrid approach can integrate several artifact-driven,
static, and dynamic analysis techniques. However, in such an approach, one
technique is often dominant. For instance, static analysis may be performed
first, and the extracted data can then be enhanced with dynamic analysis
details for further investigation [43, 51, 52]. Alternatively, artifact-driven
analysis may serve as the dominant technique, with static analysis providing
additional insights [53].

3.2.2. RQ2.2) What tools exist, and which level of automation do they sup-
port?

In the existing studies, two types of tools have been identified: tools de-
veloped during the studies of microservice reengineering (in line with the
concept in the study) and existing tools to support different stages of the
reengineering process, e.g., call graph generation and log analysis. The ex-
isting migration frameworks, their levels of automation, and freely available
source code/tools are listed in Table 4. Frameworks that provide microser-
vice recommendations based on primary inputs, like source code, log files,
and system artifacts, are considered automated. The studies with tools in-

9https://fluxicon.com/disco/
10https://kieker-monitoring.net/
11https://www.elastic.co/
12https://www.dynatrace.com/
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Table 4: Tools and levels of automation; automated (A) and partially automated (PA).

Study ID Level of
automation Available artifacts

1 PA https://github.com/ServiceCutter/ServiceCutter
11 A https://github.com/miguelfbrito/microservice-identification
24 PA https://github.com/AnuruddhaDeAlwis/NSGAII
25 PA https://github.com/AnuruddhaDeAlwis/Subtype
26 PA https://github.com/AnuruddhaDeAlwis/NSGAIIFOROptimization
29 PA https://github.com/utkd/cogcn
37 PA https://github.com/Rofiqul-Islam/logparser
39 PA https://github.com/wj86/FoSCI
42 A https://www.ibm.com/cloud/mono2micro

51 PA https://github.com/loehnertz/Steinmetz
https://github.com/loehnertz/semantic-coupling

52 PA https://github.com/tiagoCMatias/monoBreaker
55 A https://essere.disco.unimib.it/wiki/arcan
61 A https://github.com/socialsoftware/mono2micro
70 A https://github.com/HduDBSI/MsDecomposer
77 PA https://github.com/RLLDLBF/FeatureTable
79 PA https://gitlab.com/LeveragingInternalArchitecture/IdentificationApproach

86 PA https://github.com/gmazlami/microserviceExtraction-backend
https://github.com/gmazlami/microserviceExtraction-frontend

89 A https://drive.google.com/drive/folders/1TQaS8etLr-32d0RXwC1Le-IOMVaDBcSS

volved in different stages of the migration process, like data extraction and
system modeling, are categorized as partially automated.

Multiple categories of tools are available based on the approaches used
to examine the monolithic system. There are tools for the static analysis
of software systems, database administration, runtime monitoring, visualiza-
tion, architectural validation, and load simulations. These tools, technologies
used, and respective study IDs are listed in Table 5. Moreover, a comparison
between existing tools utilized to extract microservices has been made in a
separate study by Lapuz et al. [54]. Ren et al. [55] used their tool EasyAPM
to record the operation data and parameter information through the instru-
ment on the JDBC and data access class libraries. Other supportive tools
used for testing, clustering, and other specific purposes are listed in Table 6.
The purpose column indicates the use of these tools in different steps in the
system modeling and microservices extraction process.

3.2.3. RQ2.3) Which techniques/algorithms are used?
The identified techniques can be broadly categorized into two types: sys-

tem modeling techniques and microservice extraction techniques. The system
modeling techniques are used to interpret or model software systems, creating
their abstract representations, while microservice extraction techniques are
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Table 5: Tools for monolithic system analysis.

Purpose Tool/Library Details Technology Study IDs

Static analysis
(source code)

Java Call Graph
(open source)

Reads jar files to collect the method
calling sequences. Dynamic Analysis is possible
but is used only in static context.
(https://github.com/gousiosg/java-callgraph)

Java 13, 111,
112

Java Parser/Symbol
Resolver
(open source)

Constructs abstract syntax tree for structural
dependency extraction.
(https://javaparser.org/)

Java 11, 33

Mondrian
(open source)

Performs static source code analysis
(https://github.com/Trismegiste/Mondrian) PHP 27, 28

WALA
(open source)

Analyses project class hierarchies and
generates call graphs.
(https://github.com/wala/WALA)

Java, JavaScript 53, 57

Soot
(open source)

Models source code to analyse, instrument,
optimize, and visualize applications.
(https://soot-oss.github.io/soot/)

Java, Android 29, 53

Doop & Datalog
(open source)

Conducts static analysis of source code
using Datalog engine.
(https://plast-lab.github.io/doop-pldi15-tutorial/)

Java, Android 53

JackEE
(open source)

Provides static analysis of Java Web applications
with enterprise framework support. Additional
parameter is used for Doop framework to run JackEE.
(https://github.com/plast-lab/doop)

JEE applications 53

Spoon
(open source)

Parses source code into abstract syntax
tree for further analysis.
(https://spoon.gforge.inria.fr/)

Java 61

Structure 101
(commercial)

Validates software architectures by visualizing
their structures from source code.
(https://www.sonarsource.com/structure101/)

Java, .Net, C/C++ 2, 46, 71,
111

Sonargraph
Architect
(commercial)

Offers architecture checks, duplicate code
detection, virtual refactorings, cyclic dependency
resolution, and comparison with previous versions.
Suppors Git repository mining.
(https://www.hello2morrow.com/products/)

C#, C/C++, Java,
Python 3 77

Semantic analysis
(source code)

ANTLR
(open source)

Parses the source code to generate grammar for
language recongnition.
(https://www.antlr.org/)

Java, C#, Python, Go,
C++, Swift, JavaScript,
TypeScript

97

Static analysis
(database)

SchemaSpy
(free software)

Generates Web-based visual representations
by analysing database metadata.
(https://schemaspy.sourceforge.net/)

Java-based tool 2, 71, 72

DBeaver
(free and commercial
versions)

Provides tools for database adminstration
and schema analysis.
(https://dbeaver.io/)

MySQL, Maria DB,
PostgreSQL, SQLite 46

JSqlParser
(open source)

Parses SQL statements and translates them into
hierarchies of Java classes.
https://github.com/JSQLParser/JSqlParser)

Java, SQL 61

Dynamic analysis

Kieker
(open source)

Monitors and analyzes runtime behavior of
software systems.
(https://kieker-monitoring.net/)

Java, .Net, C, VB 13, 39, 88,
108

Elastic APM
(commercial)

Supports real-time monitoring, performance analysis
of incoming requests/responses, database queries,
cache invocations, and external calls.
(https://www.elastic.co/solutions/apm)

Java-based Web, Data
access frameworks,
application servers,
messaging frameworks,
AWS

2, 72

Disco
(free and commercial
versions)

Analyzes event logs to identify call graphs
and enables automated process discovery.
(https://fluxicon.com/disco/)

Log files of software
systems

2, 24, 25,
26, 72

ExplorViz
(open source)

Provides runtime monitoring and visualization
of software systems
(https://explorviz.dev/)

Applied to Java-based
systems 46

django-silk
(open source)

Profiles and inspects the django framework,
analyzing HTTP requests and database queries.
(https://github.com/jazzband/django-silk)

Python django
framework-based tools 52
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Table 6: Additional tools used for system analysis.

Purpose Tool Details Technology Study IDs

Testing
Jmeter
(open source)

Provides load simulation
(https://jmeter.apache.org/) Java 6, 7, 108

Gatling
(commercial)

Provides stress testing
(https://gatling.io/) Java, Kotlin, Scala 16

Reverse engineering MoDisco
(open source)

Provides model-driven reverse engineering of
the source code
(https://wiki.eclipse.org/MoDisco/)

Java, JEE, XML 31, 99

Topic modeling GuidedLDA
(open source)

Provides topic modeling using latent
Dirichlet allocation
(https://guidedlda.readthedocs.io/en/latest/)

Python 55

Clustering SciPy
(open source)

Provides hierarchical clustering and generates
dendograms
(https://www.scipy.org/)

Python 61, 111

Optimization algorithm Jmetal
(open source)

Supports multi-objective optimization algorithms
NSGA II and NSGA III
(https://jmetal.sourceforge.net/)

Java 82, 96

Document enrichmnet
WordWeb,
WordNet
(public dictionary)

Lexical databases to identify synonyms for topic
modeling
(https://wordnet.princeton.edu/)

Word dictionary 58

Lines of code count CLOC
(open source)

Blank, comment, and physical lines counting
(https://github.com/AlDanial/cloc) Java, C, Python 12

applied to identify the microservices within the interpreted systems, thereby
defining boundaries of potential microservices. Identified system modeling
and extraction techniques are summarized in Fig. 4 and Fig. 5, respectively.
Leaf nodes in the figures refer to the relevant study IDs.

Modeling techniques

Graph-based modeling
(1, 11, 13, 21, 24, 25, 26, 29, 31, 32, 37, 43, 44, 
49, 51, 52, 53, 55, 57, 61, 70, 79, 82, 83, 86, 89, 

90, 91, 93, 96, 101, 109, 116, 117)

  Matrix/table-based modeling
(7, 8, 25, 27, 28, 33, 50, 59, 65, 66, 69, 75, 77, 

80, 85, 87, 92, 108, 112)

  URI frequency-based modeling
(5, 6)

Domain element-based modeling
(33, 40, 41, 46, 48, 54)

Execution traces modeling
(2, 25, 39, 42, 72, 88)

Semantic modeling 
(55, 58, 73, 74, 85, 87, 97)

Figure 4: Classification of legacy system modeling techniques.
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System modeling techniques
Graph-based modeling is the prominent technique for modeling legacy sys-
tems, refer to Fig. 4. The vertices in such graphs can be components, system
entities, classes, methods, business processes, entry points, execution traces,
database tables, and system functionalities. Edges can be either weighted or
non-weighted. Undirected weighted edges are frequently used in the system
graphs. The existence of an edge and its weight are based on the strength
of the relationship between two vertices. Structural relationship graphs are
constructed based on the number of dependencies, method calls, and cou-
pling scores. Dependencies and method calls are directly derived from ASTs,
call graphs, and dependency graphs. Moreover, structural relationships can
be prioritized by assigning weights based on their types, e.g., generalization,
aggregation, implementation, association, instantiation, and method invoca-
tion [56].

Static dependency graphs are generated by static analysis tools. Sub-
sequently, the coupling scores are often calculated manually based on the
pre-defined parameters. Depending upon the four categories of cohesiveness,
compatibility, constraints, and communication, 16 coupling criteria have been
defined by Gysel et al. [31]. A priority and score can be defined for each
criterion that contributes to the final edge weight of the graph. Semantic
similarity-based graphs are based on tf-idf (term frequency-inverse document
frequency) or topic modeling. Once the tf-idf is calculated, a vector with the
frequency of each word distribution in the class is obtained. The cosine sim-
ilarity between two vectors is calculated, capturing the degree of similarity
between two data points. A high degree of similarity defines the closely
related classes.

Probabilistic Latent Semantic Analysis (PLSA), Latent Dirichlet Allo-
cation (LDA), Latent Semantic Analysis (LSA), and Non-negative Matrix
Factorisation (NMF) are four classes of algorithms used for topic modeling.
Latent Dirichlet Allocation (LDA) and Seeded Latent Dirichlet Allocation
(SLDA) are commonly used to identify the topic distribution within the
source code. LDA is a probabilistic topic model. It is an unsupervised
model, whereas SLDA is a semi-supervised variant of LDA. SLDA accepts
the list of keywords as input that stimulates the expected topics. LDA uses
high coherence and fewer overlaps between the concepts to derive clusters of
concepts [57]. Once the clusters are identified, cosine similarities between the
clusters are calculated to define the edge weights in the graph representation.
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In dynamic analysis-based graphs, edges represent runtime frequencies of
method invocations and execution traces, while evolutionary coupling graphs
define edges based on correlations between classes in commits and contribu-
tors involved in their development. Examples of graph models include classes
or components as vertices with topic modeling strengths as edge weights, do-
main entities as vertices connected by coupling scores as edge weights, call
graphs where vertices represent classes or methods and edges represent exe-
cution calls and their frequencies, system entities and entry points as vertices
with method calls as edges, system classes or entities as vertices connected by
evolutionary coupling edges based on revision history, classes as vertices with
edges denoting contributors involved in their development, runtime graphs
with classes or methods as vertices and edges representing invocation re-
lationships and frequencies, and architectural graphs generated by reverse
engineering tools.
Matrix/table-based modeling represents a software system as a mapping
of its attributes and components captured in a matrix with the number of
occurrences as entries to classify the co-related attributes further. Once
matrices are constructed, similarity measures are used to identify related
components that can define microservices. Either classes, methods, database
tables/entities, use cases, micro-tasks (tasks that cannot be decomposed fur-
ther), or business processes are used in the computations of the frequen-
cies of executions, sub-type/reference relationships, coupling, and cohesion
values to determine the relationship between elements. Semantic similar-
ity analysis uses classes against unique word matrices. Then, cosine sim-
ilarity determines the semantic similarity between the classes. Example
matrix/table-based modeling techniques include use-case-to-use-case similar-
ity and use-case-to-database-entity similarity matrices, subgraph similarity
matrices, class-to-database-object matrices, class-subtype (subtype relation-
ships between classes) matrices, class-reference-type matrices, micro-tasks-
to-data-object matrices, business process dependency matrices, structural
similarity matrices (structural relationships between classes in a matrix for-
mat), conceptual similarity matrices (semantic similarity between classes in a
matrix format), read/write operations between primitive types (further non-
decomposable functions) and data storage, user story coupling and cohesion
matrices, BPMN structural and data dependency matrices, feature tables,
and use case to business process mapping tables.
URI-based modeling is an approach to modeling web applications. Web
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applications operate on a request/response base, where features are requested
via URI calls, and responses are redirected to the relevant clients. Applica-
tion servers like Tomcat and WildFly record logs with the request/response
details. These details are used to infer models of the applications and iden-
tify the frequent URI calls that can be isolated as separate services for better
performance. Mean request/response time (MRRT) and response size are
used as indicators of network overhead and resource utilization.
Domain element-based modeling is another approach used to represent
software systems. This approach uses data flow diagrams, UML diagrams,
system capability models, and context maps to represent the software sys-
tems. This is a manual approach with detailed system diagrams with fine-
grain information and capabilities that are analyzed to identify bounded
contexts.
Execution trace modeling uses software logs to identify the actual meth-
ods/classes invoked during the runtime of the software systems. The col-
lection of active execution traces defines the overall behavior of the system.
In addition, inactive paths can be identified in the runtime traces analy-
sis [35]. Multiple techniques have been used in the literature to investi-
gate these execution traces. One approach is providing the software logs
into the runtime trace analysis tool, e.g., Disco process mining tool [19].
Tool-generated execution call graphs can be used to analyze and extract
the co-related classes/methods manually [19] or programmatically identify
the subtypes and common subgraphs [52]. Execution traces can be further
modeled and reduced to identify functional atoms, which are coherent and
minimal functional units [29], identify direct/indirect call patterns in execu-
tion traces [35], and analyze class and method level execution traces based
on system functionalities [30].
Semantic-based modeling is used to model the system based on linguistic
information. Identifying system topics based on the application domain [58],
generating a vocabulary tree to illustrate the system terminology [49], and
examining the system subject and operations to group the terms used in the
API specifications [28, 59] have been done in semantic-based modeling.

Microservices extraction techniques
Figure 5 illustrates the microservice extraction techniques identified in the
study. Following the modeling of the system using the aforementioned tech-
niques, the extraction process is conducted to identify potential microservice
candidates. Clustering is used as the predominant extraction technique.
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Microservice extraction 
techniques

Graph-based extraction
Matrix/table-Based

extraction
Neural networks

(29)

Machine learning & 
genetic algorithms

Custom techniques

Expert analysis 
(55)

Semantic and domain 
element analysis (40, 41, 

46, 73, 74, 85)

DFD & UML mapping 
analysis (48, 54, 69)

Feature modeled system
(8)

Rule-based identification 
(77, 100)

Dependency and call 
relation analysis (33, 91)

NSGA II
(24, 26, 39, 97)

NSGA III
(82, 83, 96)

Genetic 
algorithms (75, 92)

Matrix/table-tased 
clustering

Custom matrix-based 
identification

K-means clustering 
(5, 6, 27, 28, 58, 59)

DBSCAN (66)

Hierarchical clustering
(7, 42, 65)

Matrix-based ranking
(2, 72)

Subgraph similarity 
matrix (25)

Clustering 
Community 
detection

Custom 
techniques

Hierarchical clustering 
(61, 79, 88, 94, 111)

K-means hierarchical 
clustering (57, 70)

Temporo-spacial 
clustering (43)

SArF clustering 
algorithm (44)

Collaborative clustering
(21)

MCL algorithm (51)

Chinese whispers (51)

Affinity propagation 
algorithm (87, 90)

Girvan-Newman 
algorithm (1, 52)

Label propagation
(1, 51, 53)

Leiden algorithm 
(13, 80)

Fast community 
algorithm (32)

Louvain community 
detection algorithm 

(11, 49, 89)

Minimum spanning 
tree-based detection 

(86)

EJB-based clustering 
(31)

Seed expansion and 
clustering (93)

SPEA2 
(97)

Reinforcement 
learning (99)

Combinatorial 
optimization (101)

Custom algorithms 
(108, 112)

Custom clustering 
techniques (113)

Custom algorithms
(116)

Horizontal clustering
(117)

Figure 5: Classification of microservice extraction techniques.

Graph-based extraction is the leading technique due to the widespread
use of graph-based modeling. Hierarchical clustering is used when the num-
ber of clusters is not given as an input. In contrast, K-means clustering is
used when prior knowledge of the number of desired clusters (microservices)
is available. The advantage of parameterizing the number of clusters is the
ability to analyze the service decomposition with any possible number of
services. It can be used for a better understanding of the system and cou-
pling between the parts of the system [31]. Two variations of hierarchical
clustering that are used are agglomerative clustering and divisive clustering.
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Agglomerative clustering starts with data points and iteratively generates
the clusters, whereas divisive clustering starts with the complete dataset and
splits it into clusters. Furthermore, temporo-spatial clustering and collab-
orative clustering are also used, implemented as adaptations of hierarchical
clustering and specifically hierarchical agglomerative clustering,

Community detection studied in large-scale networks has been applied for
microservice extraction from graph models. For instance, Girvan-Newman
deterministic [60] and Epidemic Label Propagation (ELP) non-deterministic [61]
algorithms were applied to discover microservices. ELP algorithm takes in
the number of clusters as an input parameter. Louvain and fast community
detection algorithms are based on maximizing modularity within a given
network. Louvain algorithm is an unsupervised algorithm. It is based on
modularity maximization and does not require the number of communities
or the size of the communities as input [25]. Among the algorithms evaluated
for microservice detection, including MCL, Walktrap, Louvain, label prop-
agation, Infomap, and Chinese Whispers, it was observed that the Louvain
algorithm demonstrated the highest performance in supporting the identifi-
cation of microservices [33].

Hierarchical agglomerative clustering is used to analyze matrix/table-
based models of systems. DBSCAN is a density-based clustering algorithm
that aims to group elements that are densely packed in the search space and
identify noisy elements that do not fit into any clusters using two concepts,
which are neighborhood distance and the minimum number of elements in a
neighborhood [26].

The Non-dominated Sorting Genetic Algorithm II (NSGA II) and Non-
dominated Sorting Genetic Algorithm III (NSGA III) are multi-objective
optimization algorithms. A multi-objective optimization algorithm aims to
provide optimal solutions while achieving global optima when multiple con-
flicting objectives, e.g., coupling, cohesion, and modularity, are to be con-
sidered [51]. Two studies have compared the performance of NSGA II and
NSGA III and identified that NSGA III does not consistently outperform
NSGA II in microservice discovery [62, 63].

Several custom extraction techniques have been identified in the liter-
ature. Manual and expert analysis are basic extraction techniques, with
artifact-driven approaches being the most widely used manual microservice
identification approaches.
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3.2.4. RQ2.4) How is data used?
Next, we discuss the inputs and outputs of existing approaches for reengi-

neering software systems into microservices.
The artifact-driven approaches use artifacts like UML diagrams, Data

Flow Diagrams (DFD), use cases, user stories, and architectural documents
as inputs. Most existing artifact-driven reengineering approaches are man-
ual. However, several existing studies convert system artifacts to computer-
readable formats or intermediate representations and use them to identify
candidate microservices. After such (semi-)automatic identification, recom-
mended microservice candidates are delivered as output. Such outputs can
have visual representation or be given as clusters of elements. Table 7 sum-
marizes formats of inputs and outputs used by the artifact-driven approaches.
This table only covers studies with clearly identified input and output details.

Study 1 is a semi-automated approach that takes System Specification
Artifacts (SSA), such as UML and ER diagrams, use cases, security zones,
and entities, in JSON-based machine-readable format as input. Study 7 uses
use-case-to-use-case and use-case-to-database-entity relationship matrices to
generate a similarity matrix, which serves as a basis for microservice identi-
fication. As input, ⟨component – attribute⟩ data matrix is used, where com-
ponents can be the use cases of the system, and attributes are its properties.
Study 8 uses business requirements, features, and stored procedure/business
logic mapping for features as input. Then, a microservice discovery table
(MDT) is created with system requirements, corresponding features of inter-
est in the source code, and the stored procedures that implement the business
logic. This table is then used as the ground for microservice discovery. The
control, semantic, data, and organizational dependencies between business
processes represented in a matrix format with a dependency score matrix are
used in Study 21 as input to the microservice extraction. Studies 40, 41,
48, 54, 75, and 76 use domain artifacts, such as UML, DFD, ADL, BPEL,
and use case diagrams as input. Studies 40 and 41 produce bounded con-
texts identified as microservice candidates as outputs. Studies 58 and 68
follow the same pattern and produce DFD and entity groping, respectively,
as output. In contrast, the results of Study 75 and Study 115 are a set
of matrices and microservices. The matrices indicate the quality measures
of extracted microservices in terms of complexity, coupling, cohesion, inter-
face count, and estimated development time. Study 76, as output, provides
a converted and deployable system with a repository and database per mi-
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Table 7: Inputs and outputs of artifact-driven approaches.

Study IDs Input and intermediate representation Output

1
JSON-based representation of SSA to identify nano
entities to generate a graph with coupling as
the edge weight.

Entities grouped into clusters to represent
microservices (service cuts).

7
Component-attribute dataset. Use case to use case (U to U)
and use case to database entity (U to DB) relationship matrix to
generate the similarity matrix between use cases.

Candidate microservices with use
case grouping.

8 Microservice Discovery Table (MDT) with requirement,
features, and stored procedure mapping.

MDT augmented with information on
microservices, entities, and rules.

21 Business processes and dependencies (control, semantic,
data, and organizational) and dependency score matrix. Groups of cohesive activities.

40 Ubiquitous language, business operations, data operations,
domain models, database schema, and design documents.

Bounded contexts obtained after DDD pattern
analysis, business operation, and data
dependency analysis.

41 System responsibilities obtained and ubiquitous
language.

Identified candidate microservice
boundaries.

48 Data flow diagram (DFD) of the system. Set of decomposable DFDs and grouping
of DFDs as microservices.

50
System functionalities—mapping between business
requirements and system services. Task dependency
matrix for clustering.

Task decomposition as clusters to represent
microservices.

54
Class model derived from UML diagrams—boundary
(interface), control (business logic), and entity
(mapped to database table).

Entities separated as microservices.

59 Set of business processes (BPs) to generate the
dependency matrix.

Set of clusters derived from dependency
matrix.

69
Data flow diagrams (DFD) as the input. Relationship
matrix between primitive functions and data storage
for extraction.

Primitive functions grouped into
microservices.

73 BPEL of the system converted to Subject-Verb-Object
table to obtain system vocabulary trees.

System operations grouped as microservices
derived from vocabulary trees.

74 Use case, requirements, and functionalities. From use
cases, generate operation/relation table.

Manually identified microservices from the
visualization of the operation/relation table.

75, 115 Product backlog’s user stories. Decomposed microservices, backlog
diagram, and quality matrices.

76 Architecture Domain Language (ADL) to identify
bounded context from ADL.

Converted and deployable system with
database and repository per microservice.

77 Feature cards and feature table. Feature partitions identified as
microservices based on mapping rules.

92 Business processes converted to structural and data
dependencies relationship matrix. Clustered processes as microservices.

116
System requirements to derive graph-based
representation of problem domain and correlation
as vertices and edges.

Clustered problem domains as
microservices.

croservice. In Study 50, business requirements and functionalities are divided
into task levels, and a dependency matrix is created for microservice iden-
tification. Studies 59, 69, and 92 use matrix-based representations derived
from business processes, while DFDs are used to extract the microservices.
A table-based representation of domain artifacts is input to Studies 73, 74,
and 77. Business Process Execution Language (BPEL) models are used in
Study 73 to derive the subject-verb-object relationship table. This table is
used as a vocabulary to identify system operations. These system operations
are used as output microservices. In Study 74, use cases are used to con-
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struct operation/relations tables for requirements and functionalities. This
table visually represents the identified microservices and is the output of the
approach. Study 77 is grounded in system features. It has additional input
of feature cards, assigning weight to features. Microservice candidates are
produced, resulting from feature table analysis using predefined rules.

Table 8: Inputs and outputs of static approaches.

Study
IDs Input and intermediate representation Output

11 Source code, AST, and topic-based strength between
components as a graph.

Components partitions as
microservice candidates.

27

Source code and SQL queries are represented as
classes to business object relationship matrix,
cosine similarity matrix with semantic similarity
between classes and subtypes, and reference
relationship matrices generated by analyzing
the class relationship graph generated by the
Mondrian tool.

Classes partitioned into
clusters as microservices.

28
Classes to business object relationship matrix, cosine
similarity matrix with the semantic similarity
between methods, method call relationship matrix.

Methods partitioned into
clusters as microservices.

29

Source code represented as a graph with classes as
nodes and edges as calls between the classes. Classes and
entry point matrix, classes vs number of common entry
points matrix, and class inheritance matrix.

Cluster assignment matrix.

31 Source code to MoDisco tool to get the system model
as AST.

Visual representation of EJB
clusters and microservices.

32
Source code and repository represented as a graph.
Classes/interfaces as vertices, static and evolutionary
coupling as edges.

Set of clusters as
microservice candidates.

33
Source code, database, set of proposed microservices in
JSON format. Source code as abstract syntax tree for
structural data extraction.

Database and source code
refactored as microservices.

44 Source code as a set of programs and data (data access
write, read operations) represented as a graph.

Visualization as the list
of programs and
data using city metaphor.

51 Source code and repository history represented as static,
semantic, and evolutionary coupling graphs.

Classes of clusters as
microservices.

53 System dependency graph of source code and database. Graph communities as
recommended microservices.

55
Source code is the input
to the Arcan tool that creates a system
dependency graph.

Semantics of the migrating
project with Java classes as
microservices.

58 Database tables and table attributes for topic detection. Clusters of tables as
microservices.

61 System functionalities and persistent domain entities. Clusters of domain entities
as microservices.

66 Structural similarity and semantic similarity matrix.
Classes grouped into
microservices and
outlier classes.

67 Classes in the source code.
Classes grouped into
microservices based on
dependencies.
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70 Open API specification based API details to generate
API similarity graph.

API clusters as
microservices.

79
Source code for reverse engineering to obtain layered
architecture metamodel for class clustering based on
structural and data similarity.

Clusters of classes as
microservices.

80 Source code represented as class dependency graph. Visualization of graph
clusters as microservices.

85 Open API specification based API details and reference
vocabulary details to calculate semantic similarity.

API mappings as
microservices.

86 Source code to derive logical, semantic, and contributor
coupling graphs.

Clusters of classes as
microservices.

87 Open API specification based API details to extract
operation names for semantic similarity.

Clustered operation
names as recommended
microservices.

89
Source code to analyze static and semantic
relationships using machine learning techniques
to generate graph-based representation of the system.

Clusters of classes as
microservices.

90
Source code to extract the methods and code embedding
model using neural network model (code2vec) and cluster
based on semantic similarity.

Clusters of classes as
microservices.

91
Source code and database to generate dependency
graph of classes, facades, and database tables as
vertices and call relationships as edges.

Identified microservice
candidates from
dependency graph.

93 Call graph of the source code with entry points and
database access points.

Clusters created around
the detected seed classes.

96

Source code with indicators that should not be parsed,
a list of features and related execution of the legacy
system and the number of microservices to be
identified.

The candidates as individual
graphs and the associated
legacy system code.

97 Source code semantic descriptors in Extended
Backus-Naur Form (EBNF).

Identified microservices in
EBNF format.

99
Source code model after extracting by MoDisco tool
with service cuts (from Study 1) to train the AI-based
application.

Mapping between
microservices and
methods in the source code.

101
Source code as a graph with methods/entities
as vertices and the number of invocations of methods/
entities as edge weight.

Clustered methods/entities
as microservices.

109
Graph-based representation of the source code
constructed by using the AST and call graph
of the source code.

Candidate microservices
identified by combining
highly coupled classes in
the graph.

111 Call graph generated from the source code. Set of clusters as candidate
microservices.

112
Source code classes/methods identified by Java call
graph and repository history to generate similarity
matrix of related classes/methods.

Set of clusters as candidate
microservices.

117 Database and source code classes mapping to calculate
semantic similarity.

Set of graph-based clusters
as microservices.

The inputs of static analysis approaches are source code, database arti-
facts, and code repository histories. Most studies represent the source code as
graph- or matrix-based abstractions, which are then used to discover micro-
services. Specifically, graph or matrix-based clustering, genetic, and com-
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munity detection algorithms are used. As output, these approaches often
provide clusters that define candidate microservices. Table 8 summarizes the
details of inputs and outputs used by static analysis approaches. Again, only
the studies with detailed descriptions of the inputs and outputs are included
in the table.

Inputs and outputs of the dynamic analysis approaches are detailed in
Table 9. These approaches often perform statistical studies over the system’s
performance data before identifying its constituent parts or microservices.
System logs are usually collected using instrumented source code. The latter
is also used to conduct use cases and functional testing of the original and
reengineered systems.

3.2.5. RQ2.5) How are the reengineered systems evaluated?
Once the microservice extraction process is completed, the migrated sys-

tem can be evaluated from various perspectives. From a functional viewpoint,
the migrated system must retain all the essential features and functions pro-
vided by the legacy system. Additionally, the performance of the system
should meet acceptable standards post-migration. The system should also
maintain key quality attributes, such as modularity, loose coupling, high
cohesion, and appropriate granularity. The literature highlights several tech-
niques for evaluating reengineered systems, including manual expert evalua-
tions, prototype implementations, industrial case studies, cross-system com-
parisons, and property assessments.

The basic approach for validating the refactored system is via expert opin-
ions, which can be carried out directly by experts evaluating the refactored
system or indirectly by comparing the resulting system with expert-extracted
solutions. Prototyping is another approach in which the proposed reengi-
neering technique is applied over one or multiple open-source systems. In
contrast, in industrial case studies, a migration approach is evaluated based
on industry applications. Cross-system evaluation is a highly used technique
in which the proposed solution gets cross-compared with the available state-
of-the-art techniques to check if the new solution is superior. Property mea-
suring is another widely used technique. Properties like modularity, quality
of decomposition, and runtime performance of the original and reengineered
systems are calculated and compared. Moreover, a few studies have con-
sidered hyperparameter optimization [26, 59], where reengineering technique
configurations are evaluated for performance tuning.

The properties used to measure the quality of the reengineered systems
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Table 9: Inputs and outputs of dynamic approaches.

Study IDs Input and intermediate representation Output

2
Log files collected after AOP-based
instrumentation feed into the Disco tool to
obtain graphical representation of processes.

Multiple decomposition options with matrix-based
ranking for solution selection.

5 Web server access logs to analyze URI invokes. URI frequency and mean request
response time (MRRT)-based clusters.

6 Web server access logs to analyze URI invokes. Response size- and time-based clusters.

13 Monitoring logs generated using Kieker
with full business operations coverage.

Method invocation logs with time and
frequency as inputs for a node attribute network.

24 System logs with major functionality and
use case coverage.

Call graph generated using the Disco tool,
combined with static analysis results of
business objects and operations for clustering.

25 System logs with major functionality and
use case coverage.

Call graph generated using the Disco tool,
combined with business objects to identify
single-entry-single-exit (SESE) regions to derive
frequently executed patterns (FEPs).

26 Execution logs collected by simulating
user behavior using Selenium scripts. Call graphs related to executions.

39 Collected execution traces using the Kieker
tool with a predefined functional test suite.

Grouped functional atoms after applying NSGA-II
on identified functional atoms from
execution traces.

42
Use case-based runtime logs to identify direct
and indirect call relationships to generate
a similarity matrix between classes.

Clustered set of class partitions based on
similarity.

43
Use case-based logs collected from
instrumented source code to generate a
calling context tree.

Classes as clusters derived after combining
dynamic data with static information.

46 Live monitoring and visualization using the
ExploreViz application.

Identified bounded contexts by static analysis
and ExploreViz visual results.

52 Operational data (entry points, classes, queries)
collected using the Silk tool.

Classes as clusters after combining results
with system static data.

57
System logs to analyze statistics and invoke
relationships to generate the call graph with
dynamic tracing frequencies.

Clustered microservice partitions.

72 Collected traces after AOP-based
instrumentation to feed into the Disco tool.

Microservices identified after visually
inspecting the tool-generated call graphs.

83 Data on the frequency of method invokes
collected by instrumenting the source code.

Identified microservice boundaries after
combining with static details of the source
code.

88 Log files generated after instrumenting the
source code and executing test cases.

Identified microservices after execution
traces analysis.

100 Traces collected from the software
system.

Set of class/package interactions as
microservices.

108 Execution traces to derive an object call
relationship matrix. Clusters of classes as microservices.

can broadly be categorized into six categories: runtime performance, modu-
larity, coupling, cohesion, independence of functionality and evolvability, and
quality of decomposition. These categories and the studies in each category
are summarized in Fig. 6.

Runtime performance
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Figure 6: Classification of evaluation techniques.
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Runtime performance analyzes the properties of the reengineered system dur-
ing the execution phase and compares them with the corresponding proper-
ties of the monolithic application. In this context, the efficiency gain is the
proportion of the total time taken by the legacy system to process all the re-
quests compared to the total time taken by the corresponding microservices
system to process the same requests.

Modularity
Modularity measures the quality of the clusters and how well components
of a system can be distinguished, decomposed, and recombined. Structural
modularity measures the soundness of the clusters from the structural view-
point, while conceptual modularity measures the conceptual soundness of the
clusters. The mean cluster factor analyses the interconnectivity and intra-
connectivity of the clusters or microservices. Feature modularity is a measure
of feature distribution across the system derived from the notion of the sin-
gle responsibility per microservice. The predominant feature number is the
number of occurrences of the most common feature divided by the sum of
all feature occurrences. Feature modularization is the sum of the predomi-
nant feature number in every microservice divided by the number of distinct
features. In most of the studies, modularity calculation has been conducted
based on the method by Newman and Girvan [60].

Coupling
Coupling measures the level of interaction between services. Structural cou-
pling refers to the structural relationships between services. Afferent coupling
quantifies the responsibility of a service by measuring the number of classes
in other services that depend on the classes within the service. Efferent cou-
pling indicates the extent to which the classes in a service depend on the
classes in other services. The instability index is calculated as the ratio of
efferent coupling to the sum of afferent and efferent coupling, reflecting a
service’s resilience to changes in other services. Internal coupling measures
the degree of direct or indirect dependencies between classes within a mi-
croservice, while external coupling assesses the dependencies between a class
in a candidate microservice and external classes. The absolute importance
of a service (AIS) is defined as the number of clients that invoke at least one
operation of the microservice interface. Similarly, the absolute dependence
of a service (ADS) refers to the number of other microservices that invoke
at least one operation of the service. Finally, interdependence represents the
total number of dependent service pairs.

36



Cohesion
Cohesion measures the degree of interconnectedness of a service. It represents
the number of static calls within a server over all the static calls. Relation co-
hesion is the number of internal relationships, including inheritance, method
invocations, access to class attributes, and access via references. Cohesion at
the message level (CHM) defines the cohesiveness of interface messages, while
cohesion at the domain level (CHD) is the cohesiveness of services measured
using the similarity of functions. Lack of cohesion is the number of pairs of
services that do not have interdependence. Density is the degree of internal
co-relation of each microservice.

Independence of functionality and evolvability
A microservice should be independent and support flexible changes in the
system that do not affect other services. Therefore, functional independence
is an essential characteristic of microservices. Interface number is the average
number of interfaces published by a microservice. The percentage or number
of calls between two microservices is measured as the interaction number or
interpartition call percentage. Operation number (OPN) is the number of
operations provided by the microservice. Internal and external co-change fre-
quency is the frequency of entity changes inside and outside the microservices
calculated based on the revision history. The frequency of external calls is
measured as the fraction of the number of calls over the number of classes in
a microservice. In addition, the fraction between external change frequency
(across services) and internal change frequency (within services) is known as
the REI ratio. Ideally, changes inside a service should be higher than those
across the services. Therefore, the value is expected to be less than one.
Smaller values indicate the services tend to evolve independently [29].

Quality of decomposition
The measures from this category assess the quality of the functional distri-
bution across the microservices. This distribution can be, for instance, in
terms of use cases, operations, or classes. Business context purity indicates
business use case distribution across the services. It is defined as the mean
entropy of business use cases per partition. DB Transaction purity mea-
sures the distributed transactions. This measure prioritizes decomposition
with dedicated databases per microservice. Per each DB table, calculate the
partitions that access the table to get the entropy. Smaller entropy values
indicate high transactional purity [23]. The degree of even distribution of
the classes among the microservices has been measured in non-extreme dis-
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tribution. Code redundancy rate is the code volume difference between the
original and migrated systems over the original code. Domain redundancy
rate measures the duplication of responsibilities. The team size of each ser-
vice is defined as the number of functions provided by the partition. Reuse is
measured by the relationship between identified services and the legacy sys-
tem users, e.g., API calls and UI interactions. Analysis needs to be conducted
in the migrated system to calculate this property.

Other measures
MoJoSim and MoJoFM are used to evaluate a microservice-based architec-
ture against a reference architecture, e.g., against an expert-identified archi-
tecture. It is calculated by measuring the minimum number of operations,
e.g., moves or joins, required to transform the identified microservice ar-
chitecture to the reference architecture [32, 64]. API division accuracy [65]
is a measure to calculate the efficiency of API identification. It calculates
the accuracy by relating the correctly identified API against all APIs. The
cluster-to-cluster coverage (c2ccvg) measures the degree of overlap of the
implementation-level entities between two clusters [64].

Certain studies [26, 59] perform hyperparameter optimization to explore
multiple alternative decompositions to identify optimal ones with respect to
the properties discussed above. Furthermore, the Silhouette coefficient (SC)
is used to evaluate the performance of the clustering algorithms [59, 66].

Existing applications have been used to implement and evaluate the pro-
posed reengineering solutions. Most of the reengineered systems were Java-
based, with limited PHP systems identified. Applications reengineered in at
least two works are listed in Table 10.

Extensive evaluations have been conducted in several studies, where the
proposed solution was assessed against existing migration frameworks, bench-
marked against established applications, or subjected to comprehensive pro-
totyping and property calculations. The evaluation criteria employed by key
studies are presented in Table 11.

3.3. RQ3) What are the challenges and limitations of existing methods for
reengineering software systems into microservice-based systems?

This section discusses challenges associated with microservices migration.
Deciding to embark on a legacy system migration project poses several or-
ganizational challenges, including:
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Table 10: Evaluated applications.

Application Study IDs Technology

JPetStore 7, 11, 13, 39, 42, 53, 57, 66,
80, 88, 90, 108, 115, 116 Java

Acme Air 6, 7, 29, 53, 66, 80, 93 Java
Cargo Tracking System 1, 7, 48, 49, 77, 80, 115 Java
Daytrader 29, 43, 53, 55, 57, 66, 93 Java
Springblog 39, 80, 88, 90, 113 Java
Jforum 39, 88, 89, 90 Java
Apache Roller 39, 88, 90 Java
Spring boot pet clinic 44, 66, 89, 93 Java
E-commerce system 49, 58 Java
Microservices event sourcing 66, 70 Java
Kanban board 66, 70 Java
TFWA (Teachers Feedback
Web Application) 5, 7 Java

Train Ticket Microservice Benchmark 12, 88 Java
Plants by WebSphere 29, 53 Java
SugarCRM 24, 25, 26, 27 PHP
ChurchCRM 24, 25, 26, 27 PHP

• Defining strategic goals : Business owners and analysts must set clear
strategic goals and decide whether to pursue microservices migration. This
requires identifying and clarifying the business and technical drivers behind
the migration [67, 68].

• Organizational restructuring : Microservices migration often necessitates
changes in organizational structure [67, 69]. Large teams need to be split
into smaller, specialized teams capable of managing microservices. Hierar-
chical organizations may require significant restructuring to support this
transition effectively.

• Resource and cost management : Preparing resources and managing migra-
tion costs are critical challenges. This includes costs for human resources,
hardware, and tools, as well as expenses related to design, development,
and infrastructure setup. Organizations must also identify and train key
developers to handle the reengineered systems [67, 70].

Moreover, various technical challenges associated with microservices migra-
tion have been identified, as summarized below:
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Table 11: Cross-system evaluation frameworks.

ID Name Evaluation Type Details

1 Service
Cutter

Prototype and
case study

Evaluated the approach with cargo tracking system and
trading system.

6 Compared with
legacy system

ACME air web application compared in monolith and
microservices versions.

7 Green
Micro

Cross
comparison

Cross compared with FoSCI, CoGCN, Mono2Micro, MEM,
Service Cutter, API , DFD , and Business process analysis.

11 Topic
Modeling Case study Evaluated using 200 Java Spring applications selected

from GitHub for property calculations.

13 Cross comparison Evaluated against Fosci, DFD approach and distributed source
code representation.

25, 26,
27

Compared with
legacy system

Compared Sugar CRM and Church CRM legacy and
microservice versions.

28 Compared with
legacy system

Compared Dolibarr open-source enterprise management
system legacy and microservice versions.

29 Co_GCN Prototype Evaluated using Daytrader, Plants by websphere , Acme-Air, and
Diet App

39 FOSCI Cross comparison Compared with LIMBO, WCA, and MEM approaches.
42 Mono2Micro Cross comparison Compared with FOSCI, CO_GCN, and Munch approaches.
48 DFD Cross comparison Cross compared with Service cutter and API analysis approach.

49 Knowledge
Graphs Prototype Evaluated the approach with E-commerce application and cargo

tracking system.
51 Steinmetz Case study Evaluated properties using 14 applications.
53 CARGO Cross comparison Evaluated against Mono2Micro, CoCGN, MEM, and FOSCI.
61 Case study Applied the approach to 121 monolith applications for comparison.

66 Hierarchical
DBSCAN

Benchmark and
cross comparison

Evaluated existing microservices projects - Spring PetClinic,
Microservices Event Sourcing, and Kanban Board Cross compared
with Bunch, CoGCN, FOSCI, MEM, and Mono2Micro frameworks.

70 API
Graph

Benchmark and
cross comparison

Evaluated existing microservices projects Kanban, Money Transfer,
Piggy Metrics, Microservices Event Sourcing, and Sock Shop
Cross compared with Service Cutter.

77 Feature
Table Cross comparison Evaluated against DFD, Service Cutter, API analysis frameworks.

85 Interface
Analysis Prototype Precision and recall properties evaluated using Cargo

tracking system.
86 MEM Case study Evaluated 21 projects for logical, semantic, and contributor coupling.

87 Benchmark
Evaluated existing microservices projects Kanban Board, and Money
Transfer app. Amazon Web Services and PayPal evaluated using
OpenAPI specifications.

88 FOME Cross comparison Evaluated LIMBO, WCA, and MEM frameworks.

89
Case study
and cross
comparison

Evaluated against existing Service Cutter and topic modeling
frameworks. Five applications including PetClinic JForum 3, and
Compiere applications evaluated for accuracy.

90
Case study
and cross
comparison

Evaluated against FOME and multi-objective evlutionary search
frameworks. Property evaluated in JPetStore, SpringBlog, Jforum,
Roller applications.

108 Log2MS Case study
and cross comparison

Evaluated against FOSCI and Mono2Micro frameworks.
Property evaluated in four applications including JPetStore.

115 Backlog Case study and cross
comparison

Evaluated against Domain-driven design, Interface analysis, and
Service Cutter frameworks. JPetStore, Cargo Tracking System,
and Foristom Conferences(real life system) used for evaluation.
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• Lack of expert knowledge and tools : Migration to microservices often re-
quires specialized expertise in DevOps and cloud technologies. Organiza-
tions must establish continuous integration (CI) and continuous delivery
(CD) pipelines and adopt DevOps practices during the migration pro-
cess [67, 69].

• Design decisions : Making design decisions and modifying the legacy sys-
tem is challenging due to the complexity of existing software and the lack
of comprehensive design documentation [68].

• Deployment and operational challenges : Migrating to microservices intro-
duces a complicated deployment process, increased operational overhead,
difficulties in debugging and testing, and higher resource utilization [70].

• Database decomposition: Splitting the centralized database layer into dis-
tributed components can lead to data inconsistencies between services [71].

• Managing statefulness : In microservice architectures, managing state is
more complex than in monolithic systems due to their distributed nature.
Stateful systems produce outputs dependent on previous interactions, pos-
ing significant challenges in ensuring consistent state management [71].

Several limitations were identified in the current migration frameworks. The
primary limitation is the lack of a standardized mechanism for ensuring op-
timal migration and assessing the quality of decomposition. Furthermore,
depending on the approach employed, identified limitations across various
service migration systems are outlined in Table 12; the last column mentions
study IDs in which the corresponding limitations were stated.

4. Discussion and Future Directions

This section discusses the insights we inferred from this literature review.
Specifically, we discuss the insights into the artifact-driven, static, dynamic,
hybrid, and database analysis approaches, emerging approaches, ways to
evaluate the reengineered systems, and reengineering paradigms. Finally,
the section proposes directions for future research based on our findings.
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Table 12: Limitations of existing migration approaches.

Limitation Description Study IDs

Significant effort required to
transform software system artifacts

The artifact-driven approach requires significant manual effort to
transform system artifacts for further processing. For example,
Service Cutter relies on system artifacts such as use cases and
domain models, which must be manually converted into JSON
format to enable subsequent processing and clustering.

1

Availability of supportive tools

Tools incorporated into the process, such as Disco, can produce
inaccurate results, directly impacting the output. Similarly, static
analysis tools suffer from imprecise program analysis, which can
compromise the quality of the migration process.

2, 24, 25,
27, 28

Applicability of the solution

The applicability of proposed solutions is limited and often context-
specific. For instance, solutions that utilize request URLs are
applicable only to Web applications, while those based on Java
annotations and language keywords are restricted to Java-based
systems. Likewise, EJB-based identification methods are exclusively
applicable to Java EE EJB-based architectures.

5, 6, 11,
31, 33

Quality of the artifacts

The effectiveness of proposed solutions are highly dependent on the
quality of the input artifacts. For example, studies using semantic
analysis are heavily influenced by the terminology used in the source
code. Similarly, the quality and comprehensiveness of artifacts, such
as data flow diagrams, directly affect the quality of the identified
microservices. Solutions based on object-oriented principles rely on
the correct application of object-oriented programming concepts
within the source code.

11, 48, 67

Challenges in database decomposition

Database decomposition remains a significant challenge. ORM
relationships in the source code are often leveraged to reduce
complexity, but not all source codes support ORM frameworks.
Furthermore, existing solutions primarily focus on relational
databases, leaving NoSQL databases largely unaddressed in the
decomposition process.

76, 86

Coverage of the inputs
The coverage of system inputs directly impacts the quality of the
outputs. For example, in dynamic analysis, the extent to which
use cases generate system logs significantly influences the results.

2, 39, 108

Complexity of the algorithms

The algorithmic complexity is a key factor contributing to
performance limitations. Many existing algorithms and libraries
are heavily utilized for clustering and extraction tasks, and the
time complexity of these algorithms directly affects the overall
performance of the migration process.

1

4.1. Artifact-Driven Analysis
The artifact-driven approaches constitute 32% of the reviewed studies.

Service Cutter [31] is one of the pilot artifact-driven studies in microservice
identification. Hence, it has been used as a baseline in multiple studies.
The dataflow-driven technique [46] is another prominent artifact-driven ap-
proach comprising quality attribute evaluation. Greenmicro [72], Microser-
vice Backlog [34], and the Feature Table approach [47] have shown promising
experimental results in comparisons with other migration studies. Greenmi-
cro and Microservice Backlog are notable studies that involve comprehensive
cross-system analysis.
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4.2. Static Analysis
The state-of-the-art technique for reengineering software systems into

microservices is static analysis. Among the primary studies reviewed, 44%
discuss static analysis techniques, with structural analysis dominating over
semantic and evolutionary coupling approaches. Prominent structural anal-
ysis techniques include CoGCN [22], Cargo-AI Guided Dependency Anal-
ysis [23], and dependency-based microservice decomposition [24]. Notably,
Cargo-AI Guided Dependency Analysis stands out, as evaluations against
benchmark studies confirm its effectiveness. Other approaches, such as mi-
croservice identification through topic modeling [25] and the method by Sel-
lami et al. [26], utilize ASTs combined with graph-based and matrix-based
algorithms, respectively, for structural and semantic analysis. Evolutionary
coupling techniques, though less prevalent, offer significant contributions. For
example, MEM [21] constructs logical, semantic, and evolutionary coupling
graphs, employing a minimum spanning tree-based algorithm for microser-
vice detection. Similarly, the automatic extraction approach [32] uses fast
community graph clustering on graphs generated with structural and seman-
tic information, while Löhnertz and Oprescu [33] integrates static, semantic,
and evolutionary coupling graphs, experimenting with multiple clustering
algorithms. Their findings highlight the Louvain clustering algorithm as
particularly effective. Despite their promise, static analysis techniques face
challenges, notably imprecise program analysis, as identified by Nitin et al.
[23]. These approaches also rely heavily on existing tools, underscoring the
need for advancements in program analysis precision.

4.3. Dynamic Analysis
Limited experiments have been conducted using dynamic analysis tech-

niques. One approach supplies software logs as input to the process mining
tool Disco for further analysis. However, certain processes have been in-
correctly identified by this approach [19, 73]. FoSCI [29], FoME [30], and
mono2micro [35], Log2MS [74] are the prominent studies in dynamic analy-
sis. Moreover, mono2micro is a commercially available product. It collects
software log traces by executing use cases and identifies unique traces to
derive direct and indirect calls to generate a similarity matrix followed by
hierarchical clustering. Furthermore, its strategy has been compared with
FoSCI [29], CoGCN [22], Bunch [75], and MEM [21] to validate the results.
FoSCI uses reduced execution traces to identify functional atoms using the
NSGA II multi-objective optimization algorithm. FoME collects logs from
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test executions and generates descriptive log traces for clustering and shared
class processing. Both FoSCI and FoME use the Kieker runtime monitor-
ing tool for property evaluation and comparing results against MEM [21],
LIMBO [76], and WCA [77]. Log2MS [74] proposes a Model-Driven Develop-
ment (MDD)-based brownfield design approach for identifying microservices
using only execution logs. It utilizes a microservice diagram, microservice
sequence diagram, and microservice architecture modeler to generate micro-
services, drawing inspiration from greenfield software development practices.

4.4. Hybrid Analysis
Among the available hybrid analysis studies, microservice extraction us-

ing knowledge graphs [78] stands out as a comprehensive approach as an
approach that integrates static and artifact-driven analysis. It constructs a
graph from diverse inputs, including source code, database schemas, design
documents, and API documentation, incorporating data, modules, functions,
and resource details. The Louvain community detection algorithm is then
applied to identify microservice candidates. Several other hybrid approaches
combining static and dynamic analysis have also demonstrated promising
results [36, 43, 55, 79, 80]. The node attribute network approach [79] uses
call graphs to analyze method invocations and employs the Kieker runtime
analysis tool to generate a graph structure that is processed using the Lei-
den community detection algorithm. It is one of the most comprehensively
evaluated hybrid methods, compared against techniques like FoSCI [29],
the dataflow-driven approach [46], and the distributed representation ap-
proach [81]. MonoBreaker [43] combines static structural analysis with run-
time monitoring data to generate a graph model. Clustering is performed
using the Girvan-Newman algorithm, with evaluations against Service Cut-
ter [31] demonstrating that hybrid analysis yields better results than static
analysis alone. Similarly, the Migrating Web Applications approach [55]
enhances dependency graphs created through static analysis with dynamic
analysis data, using the K-means clustering algorithm to identify microservice
candidates. However, this study focuses solely on evaluating the properties
of the reengineered system. Other notable hybrid approaches [36, 80] employ
the NSGA-III multi-objective optimization algorithm to evaluate various sys-
tem properties, further showcasing the potential of hybrid analysis techniques
in improving microservice identification and system reengineering.
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4.5. Database Analysis
Database migration poses significant challenges, particularly in transi-

tioning from monolithic architectures to microservices-based systems. Key
issues include maintaining data consistency, handling distributed transac-
tions, and ensuring seamless integration of diverse database types. To ad-
dress these challenges, the following patterns have been identified [82, 83]:

1. Schema per microservice: Each microservice maintains its schema while
sharing the same database server.

2. Database per microservice: Each microservice is assigned a dedicated
database, promoting modularity and autonomy.

3. Database as a microservice: The database is encapsulated as a stan-
dalone microservice, with all interactions managed via APIs.

4. Optimized read-only database replica: A replica of the primary database
is optimized for read operations, while the primary database handles
both reads and writes.

Among these, the “database per microservice” pattern is widely preferred in
the literature [23, 50, 84] due to its alignment with microservices principles.
However, it introduces challenges in handling distributed transactions. As
a mitigation strategy, eventual consistency is often employed, where failed
requests are queued for reattempts [84].

An innovative approach to migrating monolithic databases to multi-model
polyglot persistence systems [82] draws inspiration from polyglot program-
ming principles. This approach conceptualizes the database as a microser-
vice, enabling seamless integration of SQL and NoSQL databases through an
API. By tailoring database types to the specific data needs of the software
system, this approach enhances flexibility and scalability in microservices-
based architectures.

Service extraction has also considered the persistence layer in applica-
tions [85], including mappings between SQL queries and objects [51, 52, 86].
One notable study focuses on identifying microservice candidates from busi-
ness rules embedded in stored procedures [87]. Additionally, an Object
Relational Mapping (ORM)-based system has been proposed to evaluate
reengineered systems using specific properties [88]. Widely used databases in
microservices architectures include Redis, MongoDB, MySQL, PostgreSQL,
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and MS SQL [82], highlighting the diversity of tools that support modern
database management in distributed systems.

4.6. Emerging Techniques
Microservices Backlog [34] employs genetic programming to iteratively

identify the optimal combination of microservices through the application of
an objective function. The objective function utilizes a granularity matrix,
incorporating coupling, cohesion, granularity, performance, complexity, and
development time. A comprehensive evaluation was conducted [34], wherein
the results were cross-compared with those obtained from Service Cutter,
Interface Analysis, and FOSCI.

Another use of genetic algorithms is search-based microservices detec-
tion using Non-dominated Sorting Genetic Algorithms (NSGA). The NSGA
algorithms employ multiple decision-making criteria for mathematical op-
timization problems involving two or three objective functions to be opti-
mized simultaneously [36, 37]. In general, studies have utilized NSGA-II and
NSGA-III with two or three criteria [29, 36, 51, 80, 86]. The toMicroservice
approach stands out as it incorporates five criteria for search-based detection,
including coupling, cohesion, feature modularization, network overhead, and
reuse.

Microminer [56], and the distributed representation of the source code [81]
have introduced machine learning to microservice extraction. Microminer
uses a machine learning-based word2vec model with the Louvain commu-
nity detection algorithm, while the distributed representation of the source
code uses a code2vec model with the affinity propagation algorithm. How-
ever, these approaches have no cross-comparison with prominent migration
techniques. Instead, property calculations were performed to evaluate the
proposed solutions.

Reverse engineering of software systems to derive microservices is rarely
used. Only three reviewed studies are grounded in reverse engineering of
monolithic systems [38, 64, 89]. The model-driven reverse engineering ap-
proach [38] integrates reverse engineering with reinforcement learning to cre-
ate a mapping between the identified legacy system model and a set of micro-
services. Applying reverse engineering techniques to uncover the architecture
of a system can facilitate the advancement of microservice discovery meth-
ods, particularly in cases where legacy systems are hindered by inadequate
documentation regarding their architectural structure.
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4.7. Evaluation
MicroValid [90] is the only framework identified in the primary studies

that offers a validation methodology specifically for microservices. It per-
forms static analysis of the identified microservice attributes to assess the
quality of decomposition, focusing on factors such as granularity, coupling,
and cohesion. The evaluation of migrated systems has been mainly based on
property calculation. Several prominent studies have cross-compared with
previous studies [23, 26, 29, 30, 34, 35, 47, 72, 79, 91]. Service Cutter [31] is
the classical migration study used for cross-comparison. Interface numbers,
inter-partition call percentages, and structural modularity are the widely
used properties. Even though coupling has been evaluated in many studies,
there is no convergence in the evaluated definitions of this concept. Afferent
coupling (measuring incoming dependencies) and efferent coupling (outgoing
dependencies) are frequently used coupling measurements. Precision, recall,
and F-measure are used for evaluation when a standard decomposition is
available for comparison. This can be an available microservice system or an
expert decomposition result.

Existing microservice-based benchmark systems like Spring Pet Clinic13,
Kanban14, Money Transfer15, Piggy Metrics16, Microservices Event Sourcing
(MES)17, Sock Shop18 have been used for evaluation [27]. Limited studies
focused on hyper-parameter optimization [26, 59]. Yedida et al. [92] discussed
performance improvements by optimizing hyper-parameters.

The majority of the migration frameworks applied their concepts to mono-
lithic open-source projects. JPetStore is the most frequently used project
for implementation and testing. Moreover, Acme Air, Cargo Tracking Sys-
tem, and Daytrader applications were used frequently in the reengineering
projects. Web-based applications like online shopping systems, learning man-
agement systems, banking systems, ERP systems, real-estate applications,
web-based IDEs, taxation office systems, and police department systems were
also used as proofs of concept. Above 80% of the re-engineered applications
in the literature are Java-based projects. Database-oriented applications,

13https://github.com/spring-petclinic/spring-petclinic-microservices
14https://github.com/eventuate-examples/es-kanban-board
15https://github.com/cer/event-sourcing-examples
16https://github.com/sqshq/PiggyMetrics
17https://github.com/chaokunyang/microservices-event-sourcing
18https://github.com/microservices-demo/microservices-demo
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like stored procedure decompositions, have been discussed in relatively few
studies [51, 87].

4.8. Paradigms
Several paradigms for microservices reengineering have been identified

during our analysis, such as Domain-Driven Design (DDD), workflow analy-
sis, feature analysis, system semantic analysis, repository analysis, interface
analysis, and runtime analysis. Domain-driven design focuses on the business
domain and identifies the boundaries of the microservices. Workflow analysis
uses business processes and workflows to identify microservices. Analysis and
grouping of dependent system features were used in feature analysis. Sys-
tem semantics analysis includes semantics of system features and/or source
code semantics analysis. Repository analysis includes the source code struc-
ture, version control history, and data source analysis. Interface analysis uses
web service definitions and messages disseminated via the interfaces. Finally,
runtime analysis includes analysis of execution traces and logs.

Incremental and iterative transitions are the preferred industry approach
for migrating legacy systems to microservices [67, 68, 93–95], as opposed to
direct migration. Specifically, the Strangler Fig Pattern [95, 96] is inspired
by the growth behavior of the Strangler Fig plant, which gradually encircles
and overtakes a tree, ultimately leading to the decline of the tree over time.
Similarly, microservices are introduced to the legacy system incrementally
and can lead to the ultimate decline of the legacy software system.

4.9. Gaps and Future Directions
Next, we highlight several gaps we identified in research on reengineering

of software systems into microservices systems and suggest directions for
future work in this area.

Dynamic analysis and AI-based techniques remain underutilized and are
rarely integrated into existing approaches. This gap presents significant op-
portunities for innovation and further research.

Existing studies have primarily focused on identifying microservice candi-
dates, with runtime performance evaluations limited to metrics like latency,
throughput, availability, and network overhead. However, behavioral con-
sistency in re-engineered systems remains largely underexplored. Given the
automated nature of extraction processes, developing robust validation mech-
anisms is critical to ensuring system integrity and reliability.
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Evaluating the dynamic rearrangement of microservices under varying
workloads is crucial for improving the efficiency of migrated systems. Under
low system loads, maintaining a monolithic system may be more efficient,
while transitioning to a microservices-based architecture can optimize per-
formance under higher loads. Future work can study strategies for achieving
optimal resource utilization of microservices under different workloads.

While the “database per microservice” pattern is often recommended, the
practical challenges of partitioning databases into microservices remain un-
derexplored. Key issues, such as the performance impact of distributed trans-
actions and methods for ensuring data consistency, are yet to be thoroughly
investigated. Addressing these gaps is essential for optimizing microservice
architectures and ensuring their reliability.

The effort required to redesign functionalities during microservice decom-
position has been partially addressed in previous work [97], which introduced
a complexity metric for migration. However, there remains a need for a sys-
tematic approach to accurately calculate the cost and complexity of the entire
migration process, incorporating both technical and resource-related factors.

The impact of the granularity of microservices on system performance has
not been a focus in previous studies. The Microservice Backlog approach [34]
takes granularity into account. However, the impact of microservice granu-
larity on the performance of the system requires further studies.

While the identification of microservices has been automated, the extrac-
tion of microservices from the original monolithic system remains mostly a
manual task. Therefore, there is a need for the development of automated
code refactoring approaches to facilitate the generation of microservices and
their communication interfaces.

5. Conclusion

A broad analysis of existing approaches for reengineering software sys-
tems into microservices systems has been performed in this literature review.
Initially, 4,843 papers were selected from five research paper libraries. Af-
ter multiple stages of filtering, 117 primary studies were selected for further
analysis. The identified studies were analyzed based on multiple perspectives,
including employed techniques and tools, data usage, evaluation, limitations,
and challenges. We have identified well-explored, state-of-the-art techniques
like static analysis and areas with limited focus to date, like dynamic analy-
sis. In addition, the unavailability of convergence in the studies proves that
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microservice migration research is still in its infancy. Finally, microservice
reengineering is a significant study area that can be improved further. Future
studies can focus on exploring new techniques and evaluation strategies for
microservice discovery, implementation, deployment, and assessment.
Acknowledgements. This work was in part supported by the Australian
Research Council project DP220101516.
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